25 research outputs found

    Spectral hole burning: examples from photosynthesis

    Get PDF
    The optical spectra of photosynthetic pigment–protein complexes usually show broad absorption bands, often consisting of a number of overlapping, ‘hidden’ bands belonging to different species. Spectral hole burning is an ideal technique to unravel the optical and dynamic properties of such hidden species. Here, the principles of spectral hole burning (HB) and the experimental set-up used in its continuous wave (CW) and time-resolved versions are described. Examples from photosynthesis studied with hole burning, obtained in our laboratory, are then presented. These examples have been classified into three groups according to the parameters that were measured: (1) hole widths as a function of temperature, (2) hole widths as a function of delay time and (3) hole depths as a function of wavelength. Two examples from light-harvesting (LH) 2 complexes of purple bacteria are given within the first group: (a) the determination of energy-transfer times from the chromophores in the B800 ring to the B850 ring, and (b) optical dephasing in the B850 absorption band. One example from photosystem II (PSII) sub-core complexes of higher plants is given within the second group: it shows that the size of the complex determines the amount of spectral diffusion measured. Within the third group, two examples from (green) plants and purple bacteria have been chosen for: (a) the identification of ‘traps’ for energy transfer in PSII sub-core complexes of green plants, and (b) the uncovering of the lowest k = 0 exciton-state distribution within the B850 band of LH2 complexes of purple bacteria. The results prove the potential of spectral hole burning measurements for getting quantitative insight into dynamic processes in photosynthetic systems at low temperature, in particular, when individual bands are hidden within broad absorption bands. Because of its high-resolution wavelength selectivity, HB is a technique that is complementary to ultrafast pump–probe methods. In this review, we have provided an extensive bibliography for the benefit of scientists who plan to make use of this valuable technique in their future research

    Aluminum phthalocyanine tetrasulfonate in MCF-10F, human breast epithelial cells: a hole burning study.

    Get PDF
    Laser-induced holes are burned in the absorption spectrum of aluminum phthalocyanine tetrasulfonate (APT) in MCF-10F, human breast epithelial cells. The hole burning mechanism is shown to be nonphotochemical. The fluorescence excitation spectra and hole spectra are compared with those of APT in hyperquenched glassy films of water, ethanol, and methanol. The results show that the APT is in an acidic, aqueous environment with a hydrogen-bonded network similar to that of glassy water, but showing the influence of other cellular components. Pressure shifts of holes allow the local compressibility about the APT to be determined

    Spectral hole burning, recovery, and thermocycling in chlorophyll-protein complexes: Distributions of barriers on the protein energy landscape

    Get PDF
    40 Pags. The definitive version, with tabls. and figs., is available at: http://pubs.acs.org/journal/jpcbfkChlorophyll–protein complexes are ideal model systems for protein energy landscape research. Here pigments, used in optical spectroscopy experiments as sensitive probes to local dynamics, are built into protein by Nature (in a large variety of local environments; without extraneous chemical manipulations or genetic engineering). Distributions of the tunneling parameter, λ, and/or protein energy landscape barrier heights, V, have been determined for (the lowest energy state of) the CP43 core antenna complex of photosystem II. We demonstrate that spectral hole burning (SHB) and hole recovery (HR) measurements are capable of delivering important information on protein energy landscape properties and spectral diffusion mechanism details. In particular, we show that tunneling rather than barrier hopping is responsible for both persistent SHB and subsequent HR at 5–12 K, which allows us to estimate the md2 parameter of the tunneling entities as 1.0 × 10–46 kg·m2. The subdistributions of λ actually contributing to the nonsaturated spectral holes (and affecting their recovery) differ from the respective full true distributions. In the case of the full λ-distribution being uniform (or the barrier height distribution 1/√V, a model which has been widely employed in theories of amorphous solids at low temperatures and in HR analysis), the difference is qualitative, with λ subdistributions probed in the HR experiments being highly asymmetrical, and barrier V subdistributions deviating significantly from 1/√V. Thus, the distribution of λ for the protein energy landscape tier directly probed by SHB is likely Gaussian and not uniform. Additionally, a Gaussian distribution of barriers, with parameters incompatible with those of the landscape tier directly probed by SHB, contributes to the thermocycling results.Financial support from NSERC, CFI, and Concordia University is gratefully acknowledged. R.P. thanks the MINECO of Spain (Grant AGL2011-23574, partially financed by the EU FEDER Program), and M.S. acknowledges the U.S. Department of Energy’s Photosynthetic Systems Program within the Chemical Sciences, Geoscience, and Biosciences Division of the Office of Basic Energy Sciences under NREL Contract #DEAC36- 08-GO28308 for support. R.J. acknowledges support from the NSF ARRA Grant (CHE-0907958). M.S. also acknowledges partial support from NREL pension program.Peer reviewe

    Carcinoma and SV40-Transfected Normal Ovarian Surface Epithelial Cell Comparison by Nonphotochemical Hole Burning

    No full text
    Results are presented of nonphotochemical-hole-burning experiments on the mitochondrial specific dye rhodamine 800 incubated with two human ovarian surface epithelial cell lines: OSE(tsT)-14 normal cells and OV167 carcinoma cells. This dye is selective for the plasma and inner membranes of the mitochondria, as shown by confocal microscopy images. Dispersive hole-growth kinetics of zero-phonon holes are analyzed with theoretical fits, indicating that subcellular structural heterogeneity of the carcinoma cell line is lower relative to the analogous normal cell line. Broadening of holes in the presence of an applied electric field (Stark effect) was used to determine the permanent dipole moment change for the S(0)→S(1) transition in the two cell lines. For the carcinoma cell line, the permanent dipole moment change value is a factor of 1.5 higher than for the normal cell line. It is speculated that this difference may be related to differences in mitochondrial membrane potentials in the two cell lines
    corecore